Lowering γ_t at proton injection in RHIC

• Goal: lower γ_t by \approx 0.5 to enable injection at $G\gamma=45.5$ instead of 46.5

• Four knobs: 2 "gamma-t" families near arc centers, 2 "gamma-tune" families near end of arcs

• Minimize β -beat, restore tunes to 28.73, 29.72

gamma-t quads at zero (baseline)

gamma-t = 23.3

gamma-t quads ON, KGT=KGTI=-1.0, KQTO=2.0, KQTI=0.0

 \bullet Lowering γ_t by means of γ_t quads causes considerable $\beta\text{-beat}$

 \bullet Re-matching the lattice does not seem easy, since γ_t quads are not located symmetrically within arcs

• In a FODO lattice, $\gamma_t \propto Q_x$. What happens if we lower the tune(s) by one unit?

gamma-t quads at zero, tunes lowered by one unit

gamma-t quads at zero, only Qx lowered by one unit

gamma-t quads at zero, Qx lowered by one unit store optics

gt1.twiss: Q_v -29.72 ε =10 π μ m

Conclusion

- The "solution" with γ_t quads at zero, and lowered horizontal tune ($Q_x=27.73,\ Q_y=29.72$) has very little β -beat and looks most promising.
- Some "clean-up" rematching may be required, especially at store
- Is there anything that prevents us from lowering the horizontal tune by one unit?